The glutamate transporter GLAST-1 (EAAT-1) is expressed in the plasma membrane of osteocytes and is responsive to extracellular glutamate concentration.
نویسندگان
چکیده
The glutamate/aspartate transporter GLAST-1 is expressed in bone in vivo and also exists as a splice variant (GLAST-1a) in which exon 3 is excluded. Since GLAST-1 expression is regulated in bone in response to osteogenic mechanical stimuli in vivo and binding of glutamate to receptors on osteoblasts increases osteoblast number and activity in vitro, control of extracellular glutamate concentrations may be critical for balanced bone remodelling. To determine whether GLAST isoforms may act to regulate extracellular glutamate concentration in bone we investigated whether their pattern or level of expression is responsive to glutamate concentration in bone cells. GLAST-1a mRNA is expressed at lower levels than GLAST-1 mRNA in all cells examined. The GLAST-1a/GLAST-1 mRNA ratio is greater in MLO-Y4 osteocytes than in SaOS-2 osteoblast-like cells, although this does vary in SaOS-2 cells in response to extracellular glutamate concentration. Transfection of MLO-Y4 cells with green fluorescent protein (GFP)-tagged GLAST isoforms revealed a plasma membrane localization of GLAST-1, consistent with its transporter function, whereas GLAST-1a appeared to be expressed within internal vesicles. Interestingly, low extracellular glutamate concentrations redistributed GLAST-1-GFP into a similar internal expression pattern. Regulation of the expression and distribution of GLAST-1 by extracellular glutamate in bone cells indicates that it may regulate glutamate signalling in bone, consistent with its operation in the central nervous system.
منابع مشابه
Glutamate transporters in bone.
In the central nervous system Na(+)-dependent glutamate transporters bind extracellular glutamate and transport it into cells surrounding the synapse, terminating excitatory signals. These glutamate transporters also function as ion channels. The glutamate transporter, GLAST-1, is expressed in the plasma membrane of osteoblasts and osteocytes and is the same molecular weight as in brain. Thus i...
متن کاملGlutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration.
Four L-glutamate neurotransmitter transporters, the three Na(+)-dependent GLAST-1, GLT-1 and EAAC-1, and the Cl(-)-dependent EAAT-4, form a new family of structurally related integral plasma membrane proteins with different distribution in the central nervous system. They may have pivotal functions in the regulation of synaptic L-glutamate concentration during neurotransmission and are believed...
متن کاملRetinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.
PURPOSE High levels of glutamate can be toxic to retinal ganglion cells. Effective buffering of extracellular glutamate by retinal glutamate transporters is therefore important. This study was conducted to investigate whether glutamate transporter changes occur with two models of optic nerve injury in the rat. METHODS Glaucoma was induced in one eye of 35 adult Wistar rats by translimbal diod...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 30 Pt 6 شماره
صفحات -
تاریخ انتشار 2002